

Outline

- The BaBar detector
 - Where the SVT fits in
- Basics of Silicon Detectors
 - Ionization & Signal Collection
- BaBar-specific Details
 - Physics Requirements & Constraints
- Results & Conclusions

The BaBar Detector

The BaBar Detector

Silicon Radiation Detectors

Silicon Radiation Detectors

(Knoll ch. 11)

Charged particles ionize material

Reverse bias diode collects electrons, holes

Silicon Radiation Detectors

Double sided

p side collects electrons

lower noise

works even if not fully depleted

n side collects holes

p- stops

Details of the BaBar SVT

BaBar Requirements

Scientific Objectives of BaBar:

SVT Performance Requirements

- Δz resolution < 130 μm (average Δz for B⁰ decays = 280 μm).
- Single vertex resolution $< 80 \mu m$.

 Δ Stand-alone tracking for $p_{\tau} < 100$ MeV/c with 80-90% efficiency.

The BaBar SVT

- 5 layers of doublesided silicon strips
 - •0.94 m² of Si
 - ◆ and z strips
 - Inner 3: Precision Vertexing
 - Outer 2: Pattern recognition, Low P_t tracking
- Kevlar/carbon fiber
 support system

SVT Readout

AToM Chip

- Radiation hard
- 128 Channels per chip
- Simultaneous
 - Acquisition
 - Digitization
 - Read-out

SVT Readout

- HDI: High Density Interconnect.
 Mounting fixture and cooling for readout ICs.
- Kapton Tail: Flexible multi-layer circuit.
 Power, clock, commands, and data.
- Matching Card: Connects dissimilar cables. Impedance matching (passive). **Power Supplies** • HDI Link: Reference signals to HDI digital common. DAQ Link: Multiplex control, demultiplex data. **Back** Electrical -- optical conversion. **Cables MUX Power** Front HDI Inside detector Cables Link **Matching** Si Wafers HDI Card **Kapton DAQ** Tail Link **Fiber Optic** to DAQ

Radiation Dosage

- Expected dosage of 2 MRad over 10 years in design
- SVTRAD measures dose rate to accuracy <.5 mRad/s
- Based on 2001 testing of the AToM chip with a Co⁶⁰ source an upper limit of 5 MRad was set
- Dosage of the SVT budgeted to avoid this limit

Radiation degradation of S/N ratio

S/N Limit of $10 \Rightarrow$

Radiation budget: 5 MRad

Results & Conclusions

BaBar Data so far

SVT Performance

- Average hit efficiency 97%
- Slow pion efficiency 70% for P_T>50 MeV
- Average z hit resolution 10 40 μm
 - Much less than required
- No radiation-induced change in performance observed so far (2005).

How the SVT's held up

- 95% of detector is still fully functional:
 - 6 out of 208 readout sections not working
 - 300 p-stop shorts/pinholes (mainly from before 2001)
 - 2% unbonded or otherwise dead channels
 - Redundancy has proven to be sufficient

Questions?

Backup Slides

The AToM Chip

