
  

Or, How I learned that 
Renormalization Group Theory has 
Nothing to do with Group Theory.

Research conducted by Brad Wogsland working under Prof. Wiesenfeld.



  

I. Motivation - the Feigenbaum Constant (  = 4.669202 . . .)

• xn+1 = f(a, xn)
• Examples:  xn+1 = a xn(1- xn), 

        xn+1 = a sin(α xn), etc.
• Bifurcation diagram (xn vs a)
• Feigenbaum constant is the 

limit of ratios of distances 
between bifurcations - same 
number for all maps of this 
form!

• Close-ups of the first  
bifurcation pt show that, 
numerically, the precise 
location of these pts is hard 
to find, making calculation 
of the constant to increasing 
precision difficult 

• Is there another way to 
calculate this constant?



  

II. Enter the Renormalization Group

• First appearing in the mid-1900s as a 
way to deal with infinities arising in 
Quantum Electrodynamical (QED) 
calculation of the electron’s self 
energy among other things.

• Recall the electric potential is U~1/r, 
so if r = 0 this would yield infinity.  

• Current theoretical calculations using 
these methods give results more 
precise than the 11 significant 
figures found by experiment.

• Has since been applied to many 
similar problems, including critical 
phenomena and the onset of chaos.

• This body of techniques uses scaling 
laws to reach an approximate value, 
and in the limit, the correct value for 
attributes of these problems. 



  

III. Renormalization Group Theory

Onset of Chaos

Successive
bifurcations

Different iterative maps

• Graph of different iterative 
maps in the function space 
of all unimodal functions.

• All maps intersect the 
chaotic boundary 
orthogonally (inset).

• Thus, different maps all look 
the same in the limit as they 
approach chaos - 
“Universality”.

• This is the reason that the 
Feigenbaum constant is the 
same for all of these maps.

• So if we make a few 
simplifications, the problem 
becomes much easier to 
work with...



  

IV. Calculation

• Instead consider the simpler function 
space of functions of the form          

f(x) = a - bx2 + cx4

• Applying the transformation             
T[f(x)] = α f(f(x/α))

• yields the nonlinear map                   
a`= a α(1-ab+a3c)                    
b`= -(1/α)(2ab(b-2a2c))            
c`= -(1/α3)(b3+2abc-6a2b2c-4a3c2)

• which has fixed points only if             
α3- α-24α2+32α3/(β+4α) = 0  

where β= 1-1/α+α/4.
• By the way, α is called the universal 

scaling constant, which we calculate 
here to be α = -2.53403.  Not far off 
from the real value of α = -2.5029….

• And if we calculate the eigenvalues of 
the fixed pts of the map above...

• The largest of these eigenvalues 
yields δ = 4.7425  Again, this is 
not far off from the accepted 
value of 4.6992...

• Because we are dealing with these 
very nicely behaved power series, 
this approximation method is 
tractable,

• i.e. although the method at first 
seems more difficult, the 
difficulty increases polynomially 
with increasing accuracy as 
opposed to the exponentially 
increasing difficulty of the other 
method. 



  

IV. Future Avenues to Explore

• What about other universality classes (i.e. functions without a quadratic maximum 
at x = 0)?  

• Are there any universality classes which don’t yield to these methods?
• Quantitatively, how good is this method? And, is there a simpler tractable method 

for calculating δ?
• Any other questions?
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