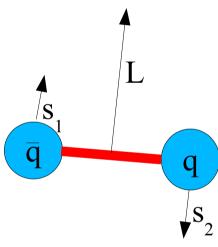

The Nature of the X(3872)


Brad Wogsland
DOE Presentation
January 9, 2006

New States Discovered by B-Factories

- New states: X(3940), Y(3940), X(3872), Y(4260)
- Need to establish nature (conventional, exotic)
 - Use several different production modes: B-decay, ISR, $\gamma\gamma$
 - Angular analysis (complicated)
 - Compare different decay modes (rate measurements)

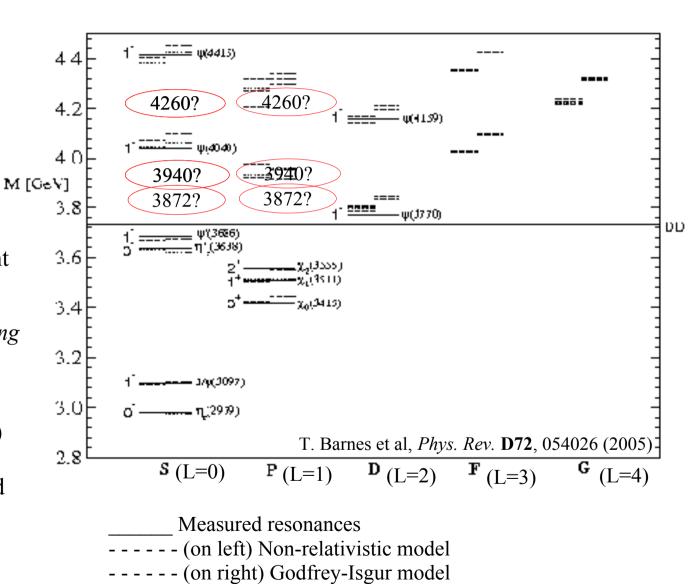
QCD

- QCD predicts qq and qqq (which are observed), but also qqq, qqg, gg, etc.
- $\alpha_s = .22$ at the mass of J/ψ
- Conserved quantities in QCD:
 - Parity $P = (-1)^{L+1}$
 - C-Parity $C = (-1)^{L+S}$
 - Isospin I

$$J = |L-S|, \dots, L+S$$

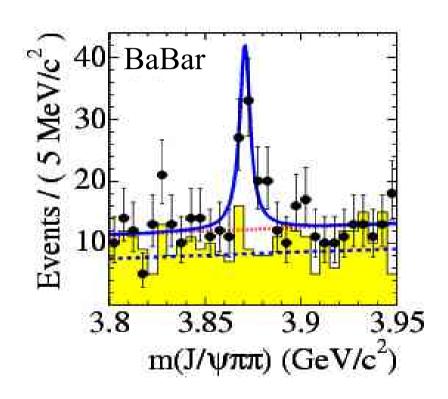
total angular momentum

Meson quantum numbers


L can be any number, but S can only be 1 (spins aligned $\uparrow \uparrow$) or 0 (spins antialigned $\downarrow \uparrow$) for the two quarks in a meson:

L	J ^{PC}
0	0 ⁻⁺ , 1
1	1 ⁺⁻ , 0 ⁺⁺ , 1 ⁺⁺ , 2 ⁺⁺
2	2 ⁻⁺ , 1 , 2 , 3

Resonances that otherwise look like mesons but don't have these quantum numbers are called exotics.


The Search for Charmonia at B-Factories

- Charmonium is a 2 particle system like hydrogen.
- Therefore quantum mechanics "simple"like hydrogen, but QCD potential unknown.
- Many use modified Coulomb plus linear potential which gives good results with the right parameters.
- $V = -(4/3)(a_s/r) + kr + something$
- New resonances observed at B meson factories like X(3872), X(3940), Y(3940) and Y(4260) are possible candidates for the unobserved states not predicted by potential models for conventional mesons

Bradley J. Wogsland

X(3872)

- First discovered at Belle (the other B meson factory in Japan) in B decays
- First observed as a resonance in the channel $J/\psi \pi^+ \pi^-$

```
non-B background
+ peaking background
+ X(3872) signal
m<sub>ES</sub> sideband
```

 61.2 ± 15.3 events 6.1σ significance mass $3871.3 \pm 0.6 \pm 0.1$ MeV

Finding the Isospin of the Dipion Subsystem in the Decay of X(3872)

- Since the isospin I of J/ ψ is zero, the isospin of the dipion system is the same as that of the X; $I(\pi^+\pi^-)=0,1$, $I(\pi^0\pi^0)=0$, $I(\pi^+\pi^0)=1$
- Define $R = \Gamma(X \to J/\Psi \pi^0 \pi^0)/\Gamma(X \to J/\Psi \pi^+ \pi^-)$
- This means that the quantum numbers of X(3872) are

R	C-Parity	Isospin		
0	+	1		
0.5	1	0		

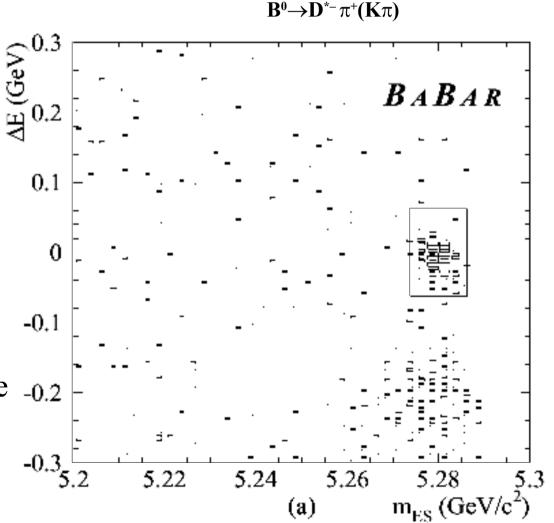
- Belle reports indirect $R(X) < 1.3R(\psi')$ where $R(\psi') \sim .6$ (@90% C.L.)
- X->J/ $\psi \pi^+ \pi^0$ not observed yet
- X->J/ $\psi \pi^0 \pi^0$ not measured --> my task

Search Strategy

- B meson decays
 - B -> X K, X -> J/ψ π π
 - B, K, pions can be charged or neutral
 - Only neutral X observed
 - Kinematics well defined
 - as compared to ISR and $\gamma\gamma$
- Two stage analysis
 - 1) Filter (wide open)
 - 2) Fine selection & likelihood fit

B-Decay Reconstruction

Kinematic variables:


Energy Substituted Mass

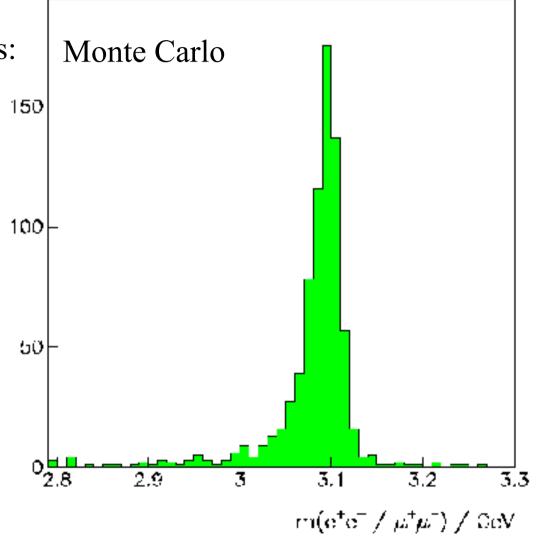
$$m_{ES} = (E_{bc}^2 - p_B^2)^{.5}$$

• Delta E

$$\Delta E = E_{bc} - E_B$$

• E_{bc} is the beam-constrained energy, E_B is the energy of the -0.2 B meson, and p_B² is its momentum squared -0.3

B-Decay Reconstruction


Stable + composite particles:

for example:

$$J/\psi -> e+e-/\mu+\mu-$$

invariant mass:

$$m^2 = (E_1 + E_2)^2 - (p_1 + p_2)^2$$

Filtering

- Data reduced in three stages:
 - 1) Raw Data Skim (processed)
 - 2) Selective Skim (ex. All events containing a J/ψ)
 - 3) Custom Skim (analysis-specific program prepared by me)
- Analysis started October 05
- BaBar software going through a period of rapid development
 - Filter written with two versions of the analysis software
 - Final version to be used in summer not yet known
 - Filtering started at SLAC on Monte Carlo
 - Skims moved to France (in2p3) during filtering
 - Filter program rewritten and tested to run at in2p3
- Filtering Runs 1-4 took ~1 week
 - Filter efficiency ~60% from MC testing
 - Completed late November 05
 - Root files to be moved to UT for microanalysis
 - Microanalysis takes ~1 day allowing for testing of final selection procedure

Filtering ... by the numbers

Run	All events (x10 ⁶)	JpsitollTight skim (x10 ⁶)	Filtered	% remaining
1 to 4	3317	19.9	743486	0.022

- Over 800 million Raw Data for Run 5 already processed
 --> started tests of new release and data
- Run 5 will contain as much data as Runs 1-4 combined
- Expect to observe ~45 X->J/ ψ π^0 π^0 events in Runs 1-5 if R=.5
- Analysis projected for Summer'06